Dynamical Fuzzy Control with Block Based Neural Network
نویسندگان
چکیده
In this paper, a different fuzzy control algorithm, which is used dynamical fuzzy logic system and block based neural network, is proposed for dynamical control problems. The proposed algorithm is a general method, which can be applied to great variety of realworld problems. The effectiveness of the proposed method is illustrated by simulation results for dc motor position control problem.
منابع مشابه
Direct Adaptive Fuzzy-neural Control With State Observer & Supervisory Controller for Unknown Nonlinear Dynamical Systems
In this paper, an observer-based direct adaptive fuzzy-neural network (FNN) controller with supervisory mode for a certain class of high order unknown nonlinear dynamical system is presented. The direct adaptive control (DAC) has the advantage of less design effort by not using FNN to model the plant. By using an observer-based output feedback control law and adaptive law, the free parameters o...
متن کاملNeural Network Based Predictive, Narma-l2 and Neuro-fuzzy Control for a Cstr Process
In recent years, there has been an expansive growth in the study and implementation of neural networks over a spectrum of research domains. Neural network based Predictive control is recognized as an efficient methodology to address difficult control problems. The NARMA model is an exact representation of the input-output behaviour of finite dimensional non-linear discrete time dynamical system...
متن کاملSolving Linear Semi-Infinite Programming Problems Using Recurrent Neural Networks
Linear semi-infinite programming problem is an important class of optimization problems which deals with infinite constraints. In this paper, to solve this problem, we combine a discretization method and a neural network method. By a simple discretization of the infinite constraints,we convert the linear semi-infinite programming problem into linear programming problem. Then, we use...
متن کاملNeural Network Control with Fuzzy Logic Compensation
This paper presents a new AI based control strategy. A dynamic neural network is used to identify the plant on-line. The control signal is then calculated iteratively according to the responses of a reference model and the identified neural model of the process. A fuzzy logic block with four very simple rules is added to the loop to improve the overall loop properties. This synergetic AI contro...
متن کاملUtilizing a new feed-back fuzzy neural network for solving a system of fuzzy equations
This paper intends to offer a new iterative method based on articial neural networks for finding solution of a fuzzy equations system. Our proposed fuzzied neural network is a ve-layer feedback neural network that corresponding connection weights to output layer are fuzzy numbers. This architecture of articial neural networks, can get a real input vector and calculates its corresponding fuzzy o...
متن کامل